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In order to solve a system of coupled SchrGdinger equations, four analytical variants 
are given, and their range of applicability is discussed. One of these variants is used 
in the determination of the Channel Coupling radial wave fxmctions, the Optical ode1 
wave functions and the regular Coulomb function. 

1. INTR~DUC~~~N 

The central part of the many problems of quantum mechanics is the solution of 
a system of coupled Schrodinger equations (e-g. Channel Coupling Theory of 
Nuclear Reactions [l], Theory of Isobaric Analogue Resonances f2], etc.). 
Usually this system is solved by numerical approximation methods (a Runge 
method, for example). A numerical resolution of a system of N eqn~tio~s re 
N numerical integrations of the system with N different initial conditio 
complete solution being a linear combination of these N numerical i~te~at~o~s~, 
so that the difficulties on numerical evaluation of the solution increase with the 
number of the equations [3]. 

Instead of a numerical resolution of the system it is preferable to use 
series method. (exactly as in theory of some special functions) because the nu 
evaluation of the solution and its derivative is reduced to cak~lating some secur- 
rence relations. This method is faster than a unge-Kutta method [4 
other hand this method gives analytical expresions for the solution and its 
and, probably, it permits the comparative study of different a~~r~~irna~~Q~§ 

nel Coupling Theory, as the Optical Model for the elastic scatterirsg an 
B.A. for the inelastic scattering. 

ecently, I. Chen proposed [5] a power series method in order to solve a syste 
of coupled Schrodinger equations. This method relies on rhe ~a~trna~~~~‘~ 
method [6] for solving a first order matrix equation. But in Chen’ 
mathematical conditions imposed on the potential make it inapplic 
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cases (e.g. for a nonspherical potential in Channel Coupling Theory). A generaliza- 
tion is presented in this article which leads to four analytical variants as the solu- 
tions of coupled Schrijdinger equations. One of the variants (IV) coincides with 
that proposed in the work [5]. In another variant (III) the mathematical conditions 
imposed on the potential is less restrictive than in Chen’s variant so that it becomes 
applicable in all cases of Channel Coupling Theory, for example. As examples of 
applications of this variant we deduce Channel Coupling radial wave functions, 
Optical Model wave functions and regular Coulomb functions [7]. 

2. THE SOLVING OF THE SYSTEM OF COUPLED EQUATIONS 

We consider a system of equations of the form 

d2XJdx2 = i VikXk = Vii& + C VikXk 
k=l lC#i 

Vii has a singularity at origin 

vii = ‘yi(yt + 1)/x2 + Pi/X + vi . 

In matrix notation 

2-r = II &Ill” v = /I vi, iinR 

the system is written 

d2X/dx2 = V . X. 

(1) 

By the transformation 

y 3 6ldx 2n 
I I 

0 v2n 
x 1’ A = I 0 zn’ I I I = 11 &k hn 

the system takes the form 
dY/dx = A - Y. (2) 

Since, at the origin X(0) = 0 and (dX/dx)o=o = C we find Y(0) = I ,” (. Making the 
nonsingular transformation B(x) 

+=B-Y (3) 

so that in the matrix equation for Z,!J to have only one regular singularity for x = 0 

It gives 
d#/dx = P* * Y. (4) 

P*B = dB/dx + B * A. (5) 
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ation is satisfied by three matrices P*, B and A. Since * has not yet been 
is still arbitrary 

with 

B,, = B,, = lj(biX”“) Si, // 

B,,B,;1 E C = I@ cijxi) Si, 1: 

The inverse of the matrix B is 

where (7) 

B,, = -B;;B,,B,-,1 = -i%,-,” ~ C 

The quantities b, , cij , mi and j are chosen so that P* shoul have a sin~~~~r~~~ 
of the form l/x 

The different choices lead to four variants 

I. bi = 1; j = 0,-l; ci,, = ,842~~; k-1 - Yi 
II. b, = 1; j = 0, -1; Cd0 = pi/2y& f% = yi, C&l = yi 

III. bi = 1; j = 0,-l; ciO = -p,/2(y, + 1); wzEi = G-l = -(yi + 1) 
IV. bi = I ; j = 0, -1; ciO = -/3,/2(y, + 1); m, = -(ri A- I>; ciel = -(ri + 1) 
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II. 42 = B21 = IlW”> &7c II 

&A = llW3i/2~,) xvi + Y&‘~-~) L II 

B,, = - ~~((/3,/2y,) x-‘” + yix-yi-l) I& II 
P, = 0 
p2 = IlG4 L II (Yl < y2 e -** < ?/la) 

Pll = - IlWYi) &?c II 
PI2 = I 

(P2l)ii = vi - P?/4Yi2 

(P,&. = I;/&ym 0 5 j> 
p22 = --pll 

III. B12 = B21 = I 
B22 = - llW(~i + 1) + (ri + 1)/x) &,/I 
BI, = --B22 

Pl = Ilbi + 1) &?c II (71 < y2 < *-* < yn) 
P2 = -P, 

Pll = ll@i/2(Yi + 1)) si?c II 
PIZ = I 

(P2l>i, = vi - ,&2/4(Yi + 0” 
(P2l)ij = vii 0 + A 

p22 = -p11 

IV. B,, = B,, = ~~(x-““+~‘) &, jl 

B,, = - /((pi/2(yi + 1)) x-(‘“+l) + (yi + 1) x-(‘*+‘)) S,, II 

&I = llW3i/2(yi + 0) ++l + (yi + 1) ~“9 62, II 

PI = 0 
P, = - II 2(y, + 1) SiP II b-5 < y2 -G **’ < m> 

Pll = lI@i/%4 + 1)) &7c II 
Pp2 = I 

(P2dii = vi - fv/4(Yi + II2 

(P&j = v~jxy~-y~ (i f A 
p22 = -p11 

This variant coincides with that from the work [5]. The first two variants require 
yi # 0 and the last two ya f - 1. If yi = 0 or yi = - 1 then yi(yi + 1)/x2 
disappears. Then, the equation (4) becomes 

d#ldx = (P-l/x + P,$ (9) 
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In order to solve this equation by the method of ~a~t~ac~e~ it is necessary to 
make the transformation Pm, -L A so that 

dqlr/dx = (P-,/x + P)$ 3 d@/dx = (A/x + Q) c.~W 

and the characteristic values of A should satisfy 

A, 3 x, 3 **. >, A, > h,+l 2 -.a >, A,, . (11) 

(In the four variants we have accepted such an order of the equations in the system 
sothaty,<y,<**.<y,). 

By the S transformation 
$b-@=S$i 

Pm, + A = SP-,S-l 
P+17 = SPF 

we find, in the four variants 

Yn+1. 
A, = 

0 

i 
-h + 1) . 

> A, = 

0 I 
S-l = T o 

-Yl 
A, = 

0 

1. 

S-l= 0 1 
I I IO' 

A, = 0, 

s-1 = s. 
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IV. 
I 0 

s= 0 I’ I I 
A, = 0, A, = 

s-1 = s, 

--2h + 1) 0 . 
' fl=p= 0 -2(% 

+ 

1) p 21 -; 11 1 

Now considering the condition (1 l), the system (10) is solved by the Gantmacher 
method [6]. It is assumed that L? could be expanded into a power series 

II = f I&xt 
t=o 

This means that 

In all our variants, Pll , Plz and Pzz satisfy this condition. In order to 
realise the same condition in the case of P,, matrix it is necessary that 

v, = 5 v,txt 
t=o 

and 

in the cases I and III, and 

in the cases II and IV. 
Usually the potentials Vij used in the Channel Coupling formalism [l, 21 
satisfy (a) but sometimes not (b). This makes Chen’s variant inapplicable 
in many cases of coupled Schriidinger equations. 

With 
Q(x) = G(x) T(x) (12) 

when 

G(x) = I + G,x + G2x2 + a*- = a convergent series (13) 



COUPLED SCHRbDINGER EQUAT4QNS 

e equation (10) becomes 
drjdx = (A/x + (2) ~ 1 

Q(x) = f (2~” 
t=o 

G and Q can be chosen arbitrarily, subject to the constraints (13) and (15) an 
the relation (16). 

t-1 
tGt + [Gt , Al = 2 [17,@t-,-l - G-,-&,I 061 

S=O 

It is convenient to write the Gt , ITt, Qt and A in the for 

6, = /j g!t’ /I 23 

so that, (16) becomes 

t-1 

If t = Xi - A, ~ g$ is chosen 0 and we obtain 

where 

By replacing t by t + 1 these equations can be iterated to definie g@ and q@’ for al1 
values of t. Then, Q takes the form 

0 j/ q~~i--m,-l)X~i--“~--P ji 

Q(x) = 
0 

’ . . o 

where mi = whole numbers X,(X, = pni f ui , < CT~ < 1). With (I) = u, 
we find 

Q(x) = x”( U/x) x-~ 

581/4/I-4 



(1% 
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where 
A4 = II m& II, D = I/ a& II, A=MfD. 

Then the system (14) becomes 

dr/dx = [A/x + x”(U/x) x-~] * r 

Since the multiplicative Volterra derivative is defined [6] by 

D,r = (d.l-‘/dx) . P-l 

(19) takes the form 
D,r = n/x + x”(U/x) x-~ 

In fact, one can show that 

A/x + x”(U/x) x-~ = D,(x~x~+,“-~) 

and then following solution results 

r = XMXU+A-M . C’ C’ ziz 
I I 

Cl I 

G - 
constant matrix 

This implies that the solution of the system is 
y = B-IS-1Gr = &IS-IGxMxUfA-M . C 

If the condition Y(0) = 1 E / is imposed we find for the four cases 

(20) 

(21) 

1. 

11. 

y = dXldx = 
I I X 

y = dXldx = I I 2’ 
III. 

(B;;TG,, + B,,G,,) xM1xull+D1 * Cl 
B~1G21~M1~U11+D1 . Cl 

(B;G,, j- B,,Gzl) xM1xull+D1 * C, 
B-$&~MI~U,,+DI . c 

1 ! 

(B1,TG,, +’ B,-,IG,,) x%++~~ . Cl 
B;;TG1,xM1xu’l+D1 . C 1 

’ = / ‘y / = / (BllGll + B;;G& xM1xull+D1 . Cl B--;G1lXM~X%+D~ . ,-, 1 

Considering that 17,, = constant diagonal matrix 

17,l = llvcIh & II 
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one can show that in the cases III and IV, U,, = 0. It gives 

In this form we can demonstrate that (q$')ii = 0. Indeed, if (qjf')ii = 
t - 1) we get gji) = f Ji-‘)/(t - Ai + Ai) = 0 and therefore f ji+ - 
implies 4::’ = 0 and gij ~+l) = 0 and so on. Thus, the result is a/,, = 
u,, = 0, the variants III and 6’ become 

because in these cases xn - 1 - x0 = 1: Thus, we obtain the result of the work [S] 
as the variant IV. 

3. EXAMPLES 

As examples of application of this method we deduce Channel Coupling radial 
wave functions, Optical Model radial wave functions, regular Coulomb f~~ct~o~s 
and their derivatives. 

a. CHANNEL COUPLING RADIAL WAVE Furcrrcms 

In order to obtain Channel Coupling radial wave functions, we use the variant 
II. The only nonevaluated quantities in this expression are G,, and G, 

matrices could be obtained from the recurrence- relation (16). With & = 
the recurrence relation takes the form 

and the solution becomes 
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b. OPTICAL MODEL RADIAL WAVE FUNCTIONS 

In the case of the Optical Model, the system of coupled equations is reduced to 
one equation; the Optical Model equation. Adequately all matrices are reduced to 
one element only. In this case T = 1 and the variants III and IV give the same solu- 
tion. Indeed 

@llxA1hr var = (&)IV var 

and consequently in the notation of the variant III, the solution is written 

The recurrence relation is now more simplified 

tG;, = P,,G;r;l + G;;l 

t-2 

or 

(t + 2/l,) G;, = c P;lG;;“-1 - P,,G;;l 
S=O 

G& = (n + 1) G;;l - Tp/2(y + l)] * G:l 

c. REGULAR COULOMB FUNCTION 

When V, = -1, Vszo = 0 the Optical Model equation passes into the equation 
for the motion in the Coulomb field, and consequently the solution of the Optical 
Model equation becomes the regular Coulomb function. The above relations take 
the form 

Gq”:l = [PG;“l - G:;ll/(n + l>[n + 2(y + 111 

The recurrence relation is identical with the formula (15) from the work [7], and 
regular Coulomb function can be written 

F’ = &?‘+I . G,, = Cxvfl . 



The derivative of the regular Coulomb function is 

These relations are the formulas (22) and (23) in the work [r/]~ 
The Coulomb functions are obtained usually (e.g., the work f7 

complicated procedures. The advantage of the above method consists in its 
simplicity. 
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